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1. Introduction

The study of spacetime solutions which represent extended p-brane objects has led to many

new ideas in string theory as well as in field theory [1, 2]. Interestingly, very recently there

has been a fast activity in this field, see [3-42], where certain type of Chern-Simons field

theories in 2 + 1 dimensions have been proposed to be dual to M-theory on AdS4 × S7/Zk

spacetime. Namely, the Aharony-Bergman-Jafferis-Maldacena (ABJM) Chern-Simons the-

ory [21], which has N = 6 SU(N)× SU(N) superconformal symmetry, is conjectured to be

dual to M-theory on AdS4×S7/Zk with level k > 2. While the originally proposed Bagger-

Lambert (BL) membrane theory based on compact tri-algebras has maximal N = 8 super-

conformal symmetry but is known only for SO(4)×SO(4) R-symmetry [3, 4]. Although by

allowing noncompact tri-algebras, BL theory can be extended to admit full SU(N)×SU(N)

symmetry [12]. But these theories have a ghost field in the spectrum which when gauge-

fixed to a constant value gives rise to SU(N) superconformal Yang-mills theory [19]. These

developments are necessary to understand the M-theory origin of superconformal SU(N)

Yang-Mills gauge theory which lives on the D2-branes over AdS4 × S6, and vice-versa.

For the current purpose the paper is organised as follows. In the section-2, we review

basic properties of the resolved C4/Zk orbifold geometry and write down the M2-brane

solution on the resolved space. In section-3 we discuss spontaneous compactification to

type IIA background. We discuss the nature of the singularity at the IR cut off scale. Near

the IR cutoff the string (Chern-Simons) coupling vanishes but curvature also become large.

The results are summarised in the last section.
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2. M2 on resolved C4/Zk

The flat metric on C4/Zk eight-dimensional space can be written as

ds2C4/Zk
= dr2 +

r2

k2
(dz + kA)2 + r2ds2CP3

(2.1)

where r2 = (ym)2. The ym’s are eight Cartesian coordinates which define the base space

of the geometry, that is R8 or C4. The round Fubini-Study metric on unit size CP3 space

can be read from [43, 21] and it is

ds2CP3
=dξ2+cos2 ξ sin2 ξ (ψ̃)2+

cos2 ξ

4
(dθ2

1+sin2 θ1dφ
2
1)+

sin2 ξ

4
(dθ2

2+sin2 θ2dφ
2
2) (2.2)

where the coordinate ranges are 0 ≤ ξ < π
2 , 0 ≤ z < 2π, 0 ≤ θi < π, 0 ≤ φi < 2π. The ψ̃

and the 1-form along the Hopf fibre z are given as

ψ̃ ≡ dψ +
cos θ1

2
dφ1 −

cos θ2
2

dφ2

A =
1

2

(

(cos2 ξ − sin2 ξ)dψ + cos2 ξ cos θ1dφ1 + sin2 ξ cos θ2dφ2

)

(2.3)

The space is asymptotically locally Euclidean (ALE) but has (orbifold) conical singularity

at r = 0 for all k ≥ 2.

The M2-brane solution on this transverse space is given by

ds211 = h−
2
3 (−dx2

0 + dx2
1 + dx2

2) + h
1
3 ds2C4/Zk

F(4) = d(h−1) ∧ dx0 ∧ dx1 ∧ dx2 (2.4)

where the harmonic function is

h(r) = 1 +
25π2Nkl6p

r6
. (2.5)

The background preserves 3/8 supersymmetries. The near horizon limit (r → l2pU, lp → 0)

of (2.4) gives us M2-branes on AdS4 × S7/Zk spacetime

ds211 ∼ R2

(

U4(−dx2
0 + dx2

1 + dx2
2) +

dU2

U2

)

+R2ds2S7/Zk

F(4) ∼ 6R3 vol(AdS4) (2.6)

where (R/lp)
2 = (25π2Nk)1/3. Here lp is the eleven-dimensional Planck length.

The number of M2-branes in (2.4) is taken as N · k, so that the flux through S7/Zk

remains integral of N . The doubling of supersymmetries in the near horizon region sug-

gests that the AdS4 geometry will preserves 24 supersymmetries. The holographic dual

boundary Chern-Simons theory in large N (k > 2) limit is conjectured to be the N = 6

SU(N)k × SU(N)−k superconformal Chern-Simons field theory living on the worldvolume

of Nk M2-branes [21]. While in the large N ’t Hooft limit, but with fixed N/k ratio, the

theory reduces to weakly coupled superconformal Chern-Simons theory of corresponding

N D2-branes on AdS4 × CP3 [21].

– 2 –



J
H
E
P
0
9
(
2
0
0
8
)
0
7
1

2.1 Special case of C4/Z4

Our interest is in the special case of orbifold space C4/Z4 where we are able to resolve the

conical singularity at the origin. The modified metric on C4/Zk is taken as Eguchi-Hanson

type [44],

ds2C4/Z4
=

dr2

f(r)
+
r2

k2
f(r)(dz + kA)2 + r2ds2CP3

(2.7)

which can be solved exactly for Ricci flatness. We determine that there is a unique solution

for any k value

f(r) = (1 − r80/r
8) (2.8)

where r0 is an integration constant. The coordinate ranges are fixed as

r0 ≤ r ≤ ∞, 0 ≤ z ≤ 2π. (2.9)

To know if the metric is regular near r = r0 region, we can define a local coordinate patch

r2(1 − r80/r
8) = (kρ)2

with ρ being infinitesimal radial coordinate. The r = r0 neighborhood geometry then

becomes

ds2 ≃ k2

16
dρ2 + ρ2(dz + kA)2 + r20ds

2
CP3

(2.10)

So the metric will be resolved only when k = 4. For k = 4 only, eq.(2.10) will have a smooth

R2 × CP3 geometry in the neighborhood of r = r0. This makes the fibered circle z to be

well behaved everywhere. One can think of the geometry in (2.10) as if every point in the

CP3 has a small R2 patch attached, while the CP3 space has a large but constant radius

given by r0.
1 This resolution is similar in manner as to the resolved Eguchi-Hanson 4D

instantons [44] and the resolution of Calabi-Yau cones in higher dimensions, see [45 – 49].

For a detailed study of deformations and resolutions of various Calabi-Yau spaces in higher

dimensions with fluxes turned on one can see [50].2

M2-brane solution. Correspondingly the 4N branes background on resolved C4/Z4

space can be obtained by solving

∂rr
7f∂rh = 0

The complete solution is as in equation (2.4) but with a new harmonic function

h(r) = 1 +
Q

4r60

(

arctan

(

r2

r20

)

− 1

2
log

(r2 − r20)

(r2 + r20)

)

(2.11)

Near r = r0 tip, this harmonic function behaves as

h ≃ Q

8r60
log

(

r20
2ρ2

)

.

1The resolved manifold is topologically a complex line bundle over CP3 [50].
2We comment that one can anyway study M2-branes on the transverse space in (2.7) for any k so long

as we do not bother about the orbifold singularity at r = 0. Actually the space patch inside r = r0 no

longer exists, since r ≥ r0. But in the ρ coordinate which is appropriate coordinate in the r = r0 region

the singularity will exist which can be seen from (2.10).

– 3 –
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So the solution diverges but logarithmically only. While for r ≫ r0 it becomes

h ∼ 1 +
Q

6r6
+

Qr40
10r10

+ · · ·

Comparing it with (2.5) we fix Q/6 ≡ 25π24Nl6p.

The near horizon decoupled geometry in this case is

ds211 ≃ l2ph
1
3U2

(

(−dx2
0 + dx2

1 + dx2
2)

U2h
+
dU2

U2f
+

f

16
(dz + 4A)2 + ds2CP3

)

F(4) = l3pd(h
−1) ∧ dx0 ∧ dx1 ∧ dx2 (2.12)

with

h(U) ≃ Q0

4U6
0

(

1

2
log

(U2 + U2
0 )

(U2 − U2
0 )

+ arctan

(

U2

U2
0

))

(2.13)

and f = 1− U8
0

U8 . Here we identify Q0

6 ≡ 25π2(4N) ≫ 1 so that the overall curvature of the

spacetime is small in the Planck units. It is obviously a difformation of the AdS4 × S7/Z4

discussed above as it can be seen that in the far UV regime (U ≫ U0) the geometry in

(2.12) becomes exactly

ds211 ∼ l2p(Q0/6)
1
3

(

U4(−dx2
0 + dx2

1 + dx2
2)

(Q0/6)
+
dU2

U2
+

1

16
(dz + 4A)2 + ds2CP3

)

F(4) ∼ l3p
36

Q0
U5dU ∧ dx0 ∧ dx1 ∧ dx2 ≡ l3p

√

6Q0 vol(AdS4) (2.14)

which is the near horizon geometry AdS4 × S7/Z4 corresponding to 4N M2-branes on

unresolved C4/Z4.

3. D2-branes

In order to study corresponding type IIA string picture we need to compactify along the

fibre z in S7/Z4. As the U decreases, at some value the effective radius of the z circle will

become smaller than the eleven-dimensional Planck length and we have to think in terms

of type IIA strings. We can then compactify along z and the corresponding ten-dimesional

metric and dilaton are obtained from (2.12)3

ds2str = e
2φ

3 h
1
3U2

(

(−dx2
0 + dx2

1 + dx2
2)

hU2
+
dU2

U2f
+ ds2CP3

)

e
4φ

3 = h
1
3
fU2

16
(3.1)

where h is as in (2.13) and f = 1 − U8
0 /U

8 and string length is set to one. This should be

thought of as a background due to N D2-branes on deformed AdS4 ×CP3 in the IR region

where string coupling is weak. Only in the far UV limit (U ≫ U0) or when U0 = 0 we

will get AdS4 ×CP3. Specially, near U = U0 (cut-off) IR region strings become essentially

3Our convention is (lp/R(11))
3 = 1/g2

s .
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Figure 1: This represents the plot of (R(10)/ls)
2 (upper) and e2φ (lower) Vs x. The string coupling

vanishes faster.

non-interacting as f vanishes there, however the radius of curvature given by e
φ

3 h
1
6U also

becomes small at the same time. So there is curvature singularity which will require higher

order α′ corrections to the string geometry. In order to get actual IR behaviour we define

(1 −U8
0 /U

8) = (4u)2 in the neighborhood of U = U0 which is a chosen lowest energy scale

in our theory. In this neighborhood the radius of curvature, R(10), and the string coupling

behave as

(R(10))
2 ∼ x

√

log
1

2x2

√
4N

e2φ ∼ x3

√

log
1

2x2

√
4N (3.2)

where x ≡ u
U0

. As x→ 0 it can be seen that string coupling vanishes faster than the curva-

ture radius of the string metric. It means that the strings become non-interacting. However

higher order world-sheet corrections have to be included in order to know the dynamics at

the IR cutoff. We have plotted this behaviour of quantities in eqs.(3.2) in the graph below.

4. World-volume theory

We shall now comment on the N = 6 world-volume theory of the M2-branes on the resolved

AdS4 × S7/Z4 for finite level k = 4. As we have noted above the N = 6 Chern-Simons

theory always flows to the weak coupling in IR for k = 4 being finite. We recover the

D2-brane theory on AdS4 × CP3 in the IR.

In the BL theory there is an additional scalar field which is considered to be a free field.

Its vev controls the strength of the 3D gauge coupling. In the paper [16], it was shown

that there is such a field which represents the center of mass scalar field of M2-branes

corresponding to the location of the branes in the flat transverse space. We would like to

– 5 –
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see whether this servives the interpretation once the transverse C4/Z4 space is resolved or

is no longer flat Euclidean.

Here we just write down the Born-Infeld action. The world-volume metric on M2-brane

in flat Euclidean transverse space can be written as

Gµν ≡ ηµν +

8
∑

M=1

GMN (Y )∂µY
M∂νY

N (4.1)

where (µ, ν = 0, 1, 2) and (M,N = 3, 4, . . . , 10). So it has an explicit SO(8) invariance.

Now identifying the Y 10 ≡ z and defining G10 10 = e4φ/3 and taking all GMN independent

of z field, we can write

−
∫

d3x
√

Det(G) = −
∫

d3xe−φ
√

|gµν + gmn∂µY m∂νY n + e2φ∂µz∂νz| (4.2)

where the scalars Y m, z constitute the all 8 scalars and g is the string metric. Doing this

spontaneously breaks the overall SO(8) symmetry to SO(7)×U(1). We can also see that in

the limit when string coupling vanishes, the z kinetic terms become subleading and could

be dropped, leaving behind DBI action for D2-branes. Writing down the full action for the

background with a resolved transverse space metric

ds2C4/Z4
=

dr2

f(r)
+
r2

k2
f(r)(dz + kA)2 + r2ds2CP3

(4.3)

we get an effective BI action (for K = 4)

−
∫

d3x

√

∣

∣

∣

∣

ηµν +
1

f(R)
∂µR∂νR+

R2

16
f(R)(∂µz + 4Aµ)(∂νz + 4Aν) + · · ·

∣

∣

∣

∣

(4.4)

where f(R) = 1 − r80/R
8. Thus we can see that there can be an effective potential for

scalar field R once z is Higgsed by gauge field A, however it can be a free modulus only if

dz + 4A is vanishing. While z as it appears only through derivatives will be a free field.

The gauge fields in the above do not have kinetic terms (as those are not dynamical) but

they can have Chern-Simons like terms. This indicates that the complete Chern-Simons

theory would be a gauged version of N = 6 ABJM theory (for k = 4) with appropriate

superpotential for scalar fields. It will be interesting to know such a theory for k = 4.

5. Summary

In this short note we have constructed M2-brane solutions on resolved C4/Z4 Euclidean

8-manifolds. These solutions possess new properties which to our knowledge have not

been explored earlier in the literature. The near horizon geomtry is a deformation of the

AdS4×S7/Z4 spacetime of the M2-branes. Although there is essential singularity in the IR

region where curvatures become large but the string (Yang-Mills) coupling vanishes. This is

juxtaposite of the superconformal Yang-Mills theories for which have strong coupling fixed

point in the IR. We conclude that the holographic dual SU(N) × SU(N) Chern-Simons

– 6 –
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theory is free near the IR cutoff. Although in IR the curvature of spacetime becomes very

small but the string coupling vanishes there. In other words the core of the resolved M2-

branes desolves into noninteracting D2-branes and the string coupling vanishes. Since the

IR region has an inbuilt cutoff U = U0 near which curvature becomes high and therefore

higher order worldsheet corrections should be taken into account. We have also commented

that the complete Chern-Simons theory would be a gauged version of N = 6 ABJM theory

(for k = 4) with appropriate superpotential for scalar fields.
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